General Chemistry: ATOMS FIRST

Young - Vining - Day - Botch

General Chemistry Atoms First

Susan M. Young

Hartwick College

William J. Vining

State University of New York, Oneonta

Roberta Day

University of Massachusetts, Amherst

Beatrice Botch

University of Massachusetts, Amherst

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

General Chemistry: Atoms First

Susan M. Young, William J. Vining, Roberta Day,
Beatrice Botch

Product Director: Dawn Giovanniello

Product Manager: Lisa Lockwood

Content Developer: Brendan Killion

Product Assistant: Nellie Mitchell

Marketing Manager: Janet Del Mundo

Content Project Manager: Teresa L. Trego

Digital Content Specialist: Alexandra Purcell

Art Director: Sarah B. Cole

Manufacturing Planner: Rebecca Cross

Intellectual Property Analyst: Christine Myaskovsky

Intellectual Property Project Manager: Erika Mugavin

Production Service/Compositor: Lumina Datamatics Ltd.

Text Designer: Pettengill Designs

Cover Designer: Sarah B. Cole

Cover Image Credit: isak55@Shutterstock

Printed in the United States of America Print Number: 01 Print Year: 2017 © 2018 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2017944192

ISBN: 978-1-337-61229-6

Cengage Learning

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**.

1.1	What Is Chemistry?
1.1a	The Scale of Chemistry
1.1b	Measuring Matter
1.2	Classification of Matter
1.2a	Classifying Matter on the Atomic Scale
1.2b	Classifying Pure Substances on the Macroscopic Scale
1.2c	Classifying Mixtures on the Macroscopic Scale
1.3	Units and Measurement
1.3a	Scientific Units and Scientific Notation
1.3b	SI Base Units
1.3c	Derived Units
1.3d	Significant Figures, Precision, and Accuracy
1.4	Unit Conversions
1.4a	Dimensional Analysis
1.4b	Multistep Problem Solving

)	Aton	ns and Elements	29
	2.1	Development of Atomic Theory	30
	2.1a	Early Models and the Advent of Scientific Experimentation	30
	2.1b	Dalton's Atomic Theory	32
	2.2	Subatomic Particles and Atomic Structure	33
	2.2a	Electrons and Protons	33
	2.2b	The Nuclear Model of the Atom	37
	2.3	Atoms and Isotopes	40
	2.3a	Atomic Number, Mass Number, and Atomic Symbols	40
	2.3b	Isotopes and Atomic Weight	42
	2.3c	Nuclear Stability	44
	2.4	Elements and the Periodic Table	47
	2.4a	Introduction to the Periodic Table	47
	2.5	The Mole and Molar Mass of Elements	53
	2.5a	Avogadro's Number and the Mole	53
	2.5b	Molar Mass of Elements	54
	Unit R	Recap	56

Electromagnetic Radiation and the Electronic Structure of the Atom			
3.1	Electromagnetic Radiation	60	
3.1a 3.1b	Wavelength and Frequency The Electromagnetic Spectrum	60 61	
3.2	Photons and Photon Energy	62	
3.2a	The Photoelectric Effect	62	
3.3	Atomic Line Spectra and the Bohr Model of Atomic Structure	64	
3.3a 3.3b	Atomic Line Spectra The Bohr Model	64 65	
3.4	Quantum Theory of Atomic Structure	68	
3.4a 3.4b	Wave Properties of Matter The Schrödinger Equation and Wave Functions	68 70	
3.5	Quantum Numbers, Orbitals, and Nodes	71	
3.5a 3.5b 3.5c 3.5d	Quantum Numbers Orbital Shapes Nodes Orbital Energy Diagrams and Changes in Electronic State	71 72 74 75	
Unit Recap			

Pro	Properties of Atoms			
4.1	Electron Spin and Magnetism	80		
4.1a 4.1b	Electron Spin and the Spin Quantum Number, $m_{\rm s}$ Types of Magnetic Materials	80 80		
4.2	Orbital Energy	81		
4.2a	Orbital Energies in Single- and Multielectron Species	81		
4.3	Electron Configuration of Elements	82		
4.3a	The Pauli Exclusion Principle	82		
4.3b	Electron Configurations for Elements in Periods 1–3	83		
4.3c	Electron Configurations for Elements in Periods 4–7	87		
4.3d	Electron Configurations and the Periodic Table	91		
4.4	Properties of Atoms	93		
4.4a	Trends in Orbital Energies	93		
4.4b	Atomic Size	95		
4.4c	Ionization Energy	97		
4.4d	Electron Affinity	98		
Unit	Recap	100		

Ionic and Covalent Compounds		
5.1	Formation and Electron Configuration of lons	104
	OI IOIIS	104
5.1a	Coulomb's Law	104
5.1b	Cations	105
5.1c	Anions	109
5.1d	Lewis Symbols	112
5.1e	Ion Size	113
5.2 P	olyatomic Ions and Ionic Compounds	115
5.2a	Polyatomic Ions	115
5.2b	Representing Ionic Compounds with Formulas	116
5.2c	Naming Ionic Compounds	117
5.3	Covalent Compounds	118
5.3a	Introduction to Covalent Compounds	118
5.3b	Representing Covalent Compounds with	
	Molecular and Empirical Formulas	119
5.3c	Representing Covalent Compounds with	
	Molecular Models	122
5.3d	Naming Covalent Compounds (Binary Nonmetals	
	and Hydrocarbons)	122
5.3e	Naming Covalent Compounds (Inorganic Acids)	124
5.3f	Identifying Covalent and Ionic Compounds	127

Covalent Bonding		
6.1	Covalent Bonding and Lewis Structures	132
6.1a 6.1b	Fundamentals of Covalent Bonding Lewis Structures	132 133
6.1c 6.1d	Drawing Lewis Structures Exceptions to the Octet Rule	134 137
6.2	Properties of Covalent Bonds	139
6.2a 6.2b 6.2c	Bond Order, Bond Length, and Bond Energy Bond Polarity Formal Charge	139 143 146
6.3	Resonance and Bond Properties	148
6.3a 6.3b	Resonance Structures Resonance Structures, Bond Order, Bond Length,	148
6.3c	and Bond Energy Resonance Structures, Formal Charge, and Electronegativity	150 151
Unit Recap		154

Molecular Shape and Bonding Theories 15			
7.1	Valence-Shell Electron-Pair Repulsion		
	Theory and Molecular Shape	158	
7.1a	VSEPR and Electron-Pair Geometry	158	
7.1b	Shape (Molecular Geometry)	161	
7.1c	Molecular Polarity	164	
7.2	Valence Bond Theory and Hybrid Orbita	ls 167	
7.2a	Two Theories of Bonding	167	
7.2b	sp ³ Hybrid Orbitals	168	
7.2c	sp ² Hybrid Orbitals	171	
7.2d	sp Hybrid Orbitals	172	
7.2e	Hybrid Orbitals and Expanded Valence	175	
7.3	Pi Bonding	177	
7.3a	Formation of Pi Bonds	177	
7.3b	Pi Bonding in Ethene, C ₂ H ₄ ; Acetylene, C ₂ H ₂ ;		
	and Allene, CH ₂ CCH ₂	179	
7.3c	Pi Bonding in Benzene, C ₆ H ₆	181	
7.3d	Conformations and Isomers	182	
7.4	Molecular Orbital Theory	185	
7.4a	Sigma Bonding and Antibonding Molecular Orbitals	185	
7.4b	Pi Bonding and Antibonding Molecular Orbitals	186	
7.4c	Molecular Orbital Diagrams (H ₂ and He ₂)	186	
7.4d	Molecular Orbital Diagrams	187	
7.4e	Molecular Orbital Diagrams (Heteronuclear Diatomic	s) 190	
7.4f	Molecular Orbital Diagrams (More Complex Molecule	es) 191	
Unit	Recap	192	

Stoi	chiometry	195
8.1	Stoichiometry and Compound Formulas	196
8.1a	Molar Mass of Compounds and Element Composition	196
8.1b	Percent Composition	199
8.1c	Empirical Formulas from Percent Composition	200
8.1d	Determining Molecular Formulas	202
8.1e	Hydrated Compounds	204
8.2	Stoichiometry and Chemical Reactions	206
8.2a	Chemical Reactions and Chemical Equations	206
8.2b	Balancing Chemical Equations	208
8.2c	Reaction Stoichiometry	211
8.3	Stoichiometry and Limiting Reactants	216
8.3a	Limiting Reactants	216
8.3b	Percent Yield	219
8.4	Chemical Analysis	221
8.4a	Determining a Chemical Formula	221
8.4b	Analysis of a Mixture	226
Unit I	Recap	227

Che	mical Reactions and Solution			
Stoi	Stoichiometry			
9.1	9.1 Types of Chemical Reactions			
9.1a 9.1b	Combination and Decomposition Reactions Displacement Reactions	230 231		
9.2	Aqueous Solutions	233		
9.2a 9.2b	Compounds in Aqueous Solution Solubility of Ionic Compounds	233 235		
9.3	Reactions in Aqueous Solution	237		
9.3a 9.3b 9.3c	Precipitation Reactions and Net Ionic Equations Acid-Base Reactions Gas-Forming Reactions	237 240 244		
9.4	Oxidation-Reduction Reactions	246		
9.4a 9.4b 9.4c	Oxidation and Reduction Oxidation Numbers and Oxidation States Recognizing Oxidation-Reduction Reactions	246 247 249		
9.5	Stoichiometry of Reactions in Aqueous Solution	251		
9.5a 9.5b 9.5c 9.5d 9.5e	Solution Concentration and Molarity Preparing Solutions of Known Concentration Solution Stoichiometry Titrations (Part 1) Titrations (Part 2)	251 254 258 260 264		
Unit	Recap	266		

Thermochemistry		
10.1	Energy	272
10.1a	Energy and Energy Units	272
10.1b	Principles of Thermodynamics	273
10.2 E	Enthalpy	275
10.2a	Enthalpy	275
10.2b	Representing Energy Change	277
10.3	Energy, Temperature Changes,	
	and Changes of State	278
10.3a	Heat Transfer and Temperature Changes: Specific	
40.01	Heat Capacity	278
10.3b	Heat Transfer between Substances: Thermal Equilibrium and Temperature Changes	281
10.3c	Energy, Changes of State, and Heating Curves	283
10.4	Enthalpy Changes and Chemical Reactions	s 287
10.4a	Enthalpy Change for a Reaction	287
10.4b	Enthalpy Change and Chemical Equations	288
10.4c	Bond Energy and Enthalpy of Reaction	290
10.4d	Constant-Pressure Calorimetry	291
10.4e	Constant-Volume Calorimetry	293
10.5	Hess's Law	295
10.5a	Hess's Law	295
10.6	Standard Heats of Reaction	297
10.6a	Standard Heat of Formation	297
10.6b	Using Standard Heats of Formation	301
Unit Recap		

0		307
Gases		
11.1	Properties of Gases	308
11.1a	Overview of Properties of Gases	308
11.1b	Pressure	309
11.2	Historical Gas Laws	311
11.2a	Boyle's Law: $P \times V = k_B$	311
11.2b	Charles's Law: $V = k_C \times T$	312
11.2c	Avogadro's Law: $V = k_A \times n$	314
11.3	The Combined and Ideal Gas Laws	316
11.3a	The Combined Gas Law	316
11.3b	The Ideal Gas Law	317
11.3c	The Ideal Gas Law, Molar Mass, and Density	318
11.4	Partial Pressure and Gas Law	
	Stoichiometry	321
11.4a	Introduction to Dalton's Law of Partial Pressures	321
11.4b	Partial Pressure and Mole Fractions of Gases	323
11.4c	Gas Laws and Stoichiometry	324
11.5	Kinetic Molecular Theory	326
11.5a	Kinetic Molecular Theory and the Gas Laws	326
11.5b	Molecular Speed, Mass, and Temperature	328
11.5c	Gas Diffusion and Effusion	331
11.5d	Nonideal Gases	333
Unit F	Recap	336
	<u> </u>	

	molecular Forces and Liquid State	339
12.1	Kinetic Molecular Theory, States of Matter, and Phase Changes	340
12.1a	Condensed Phases and Intermolecular Forces	340
12.1b	Phase Changes	342
12.1c	Enthalpy of Vaporization	343
12.2	Vapor Pressure	344
12.2a 12.2b	Dynamic Equilibrium and Vapor Pressure Effect of Temperature and Intermolecular Forces	344
	on Vapor Pressure	346
12.2c	Boiling Point	349
12.2d	Mathematical Relationship between	
	Vapor Pressure and Temperature	352
12.3	Other Properties of Liquids	354
12.3a	Surface Tension	354
12.3b	Viscosity	356
12.3c	Capillary Action	356
12.4	The Nature of Intermolecular Forces	357
12.4a	Dipole-Dipole Intermolecular Forces	357
12.4b	Dipole-Induced Dipole Forces	359
12.4c	Induced Dipole-Induced Dipole Forces	360
12.5	Intermolecular Forces	
	and the Properties of Liquids	361
12.5a	Effect of Polarizability on Physical Properties	361
12.5b	Effect of Hydrogen Bonding on Physical Properties	362
12.5c	Quantitative Comparison of Intermolecular Forces	364
Unit F	Recap	367

Introduction to Solids	372
Types of Solids The Unit Cell	372 373
Metallic Solids	376
Simple Cubic Unit Cell	376
Body-Centered Cubic Structure	377
Closest-Packed Structure	378
X-ray Diffraction	382
Ionic Solids	384
Holes in Cubic Unit Cells	384
Cesium Chloride and Sodium Chloride Structures	388
Zinc Blende (ZnS) Structure	391
Complex Solids	392
Bonding in Metallic and Ionic Solids	394
Band Theory	394
Lattice Energy and Born-Haber Cycles	396
Phase Diagrams	399
Phase Changes Involving Solids	399
Phase Diagrams	400
	Types of Solids The Unit Cell Metallic Solids Simple Cubic Unit Cell Body-Centered Cubic Structure Closest-Packed Structure X-ray Diffraction Ionic Solids Holes in Cubic Unit Cells Cesium Chloride and Sodium Chloride Structures Zinc Blende (ZnS) Structure Complex Solids Bonding in Metallic and Ionic Solids Band Theory Lattice Energy and Born-Haber Cycles Phase Diagrams Phase Changes Involving Solids

Che	mical Mixtures: Solutions and	
	er Mixtures	411
14.1	Quantitative Expressions of Concentration	412
14.1a 14.1b	Review of Solubility Concentration Units	412 413
14.2	Inherent Control of Solubility	417
14.2a	Entropy and Thermodynamic Control	
	of Chemical Processes	417
14.2b	Gas-Gas Mixtures	419
14.2c	Liquid-Liquid Mixtures	421
14.2d	Solid-Liquid Mixtures	423
14.3	External Control of Solubility	426
14.3a	Pressure Effects: Solubility of Gases in Liquids	426
14.3b	Effect of Temperature on Solubility	428
14.4	Colligative Properties	430
14.4a	Osmotic Pressure	430
14.4b	Vapor Pressure Lowering	435
14.4c	Boiling Point Elevation	437
14.4d	Freezing Point Depression	439
14.5	Other Types of Mixtures	441
14.5a	Alloys	441
14.5b	Colloids	442
Unit I	Recap	445
Offici	ισοαρ	740

4			
15	Che	mical Kinetics	449
	15.1	Introduction to Kinetics	450
	15.1a	Factors That Influence Reactivity	450
	15.1b	Collision Theory	451
	15.2	Expressing the Rate of a Reaction	453
	15.2a	Average Rate and Reaction Stoichiometry	453
	15.2b	Instantaneous and Initial Rates	456
	15.3	Rate Laws	456
	15.3a	Concentration and Reaction Rate	456
	15.3b	Determining Rate Law Using the Method of Initial Rates	459
		or milar rates	.00
	15.4	Concentration Changes over Time	462
	15.4a	Integrated Rate Laws	462
	15.4b	Graphical Determination of Reaction Order	466
	15.4c 15.4d	Reaction Half-Life Radioactive Decay	469 471
	15.40	nauloactive Decay	471
	15.5	Activation Energy and Temperature	472
	15.5a	Reaction Coordinate Diagrams	472
	15.5b	The Arrhenius Equation	477
	15.5c	Graphical Determination of E _a	479
	15.6	Reaction Mechanisms and Catalysis	480
	15.6a	The Components of a Reaction Mechanism	480
	15.6b	Multistep Mechanisms	483
	15.6c	Reaction Mechanisms and the Rate Law	486
	15.6d 15.6e	More Complex Mechanisms Catalysis	488 491
	13.06	Catalysis	431
	Unit F	Recap	493

16	Che	mical Equilibrium	497
	16.1	The Nature of the Equilibrium State	498
	16.1a 16.1b	Principle of Microscopic Reversibility The Equilibrium State	498 499
	16.2	The Equilibrium Constant, K	501
	16.2a	Equilibrium Constants	501
	16.2b	Writing Equilibrium Constant Expressions	503
	16.2c	Manipulating Equilibrium Constant Expressions	506
	16.3	Using Equilibrium Constants in Calculations	509
	16.3a	Determining an Equilibrium Constant Using Experimental Data	509
	16.3b	Determining Whether a System Is at Equilibrium	511
	16.3c	Calculating Equilibrium Concentrations	513
	16.4	Disturbing a Chemical Equilibrium: Le Chatelier's Principle	515
	16.4a	Addition or Removal of a Reactant or Product	515
	16.4b	Change in the Volume of the System	518
	16.4c	Change in Temperature	520
	Unit F	Recap	523

Acid	s and Bases	527
17.1	Introduction to Acids and Bases	528
17.1a	Acid and Base Definitions	528
17.1b	Simple Brønsted-Lowry Acids and Bases	529
17.1c	More Complex Acids	531
17.2	Water and the pH Scale	532
17.2a	Autoionization	532
17.2b	pH and pOH Calculations	536
17.3	Acid and Base Strength	538
17.3a	Acid and Base Hydrolysis Equilibria, K_a , and K_b	538
17.3b	$K_{\rm a}$ and $K_{\rm b}$ Values and the Relationship between	
	$K_{\rm a}$ and $K_{\rm b}$	541
17.3c	Determining K_a and K_b Values in the Laboratory	545
17.4	Estimating the pH of Acid	
	and Base Solutions	546
17.4a	Strong Acid and Strong Base Solutions	546
17.4b	Solutions Containing Weak Acids	547
17.4c	Solutions Containing Weak Bases	552
17.5	Acid-Base Properties of Salts	556
17.5a	Acid-Base Properties of Salts: Hydrolysis	556
17.5b	Determining pH of a Salt Solution	558
17.6	Molecular Structure and Control	
	of Acid-Base Strength	560
17.6a	Molecular Structure and Control	F00
	of Acid-Base Strength	560
Unit F	Recap	563

Advanced Acid-Base Equilibria 5				
	riavariosa riola Bass Equilibria			
18.1	Acid-Base Reactions	568		
18.1a	Strong Acid/Strong Base Reactions	568		
18.1b	Strong Acid/Weak Base and Strong Base/Weak			
	Acid Reactions	569		
18.1c	Weak Acid/Weak Base Reactions	571		
18.2	Buffers	572		
18.2a	Identifying Buffers	572		
18.2b	Buffer pH	574		
18.2c	Making Buffer Solutions	580		
18.3	Acid-Base Titrations	585		
18.3a	Strong Acid/Strong Base Titrations	585		
18.3b	Weak Acid/Strong Base and Weak Base/Strong			
	Acid Titrations	587		
18.3c	pH Titration Plots as an Indicator of Acid			
	or Base Strength	594		
18.3d	pH Indicators	596		
18.3e	Polyprotic Acid Titrations	598		
18.4	Some Important Acid-Base Systems	601		
18.4a	The Carbonate System: H ₂ CO ₃ /HCO ₃ ⁻ /CO ₃ ²⁻	601		
18.4b	Amino Acids	602		
Llnit [Recap	603		
Office	ισυαρ	003		

	sipitation and Lewis Acid-Base	607		
Equilibria				
19.1	Solubility Equilibria and $K_{\rm sp}$	608		
19.1a	Solubility Units	608		
19.1b	The Solubility Product Constant	609		
19.1c	Determining K _{sp} Values	610		
19.2	Using K_{sp} in Calculations	612		
19.2a	Estimating Solubility	612		
19.2b	Predicting Whether a Solid Will Precipitate			
	or Dissolve	615		
19.2c	The Common Ion Effect	617		
19.3	Lewis Acid-Base Complexes			
	and Complex Ion Equilibria	619		
19.3a	Lewis Acids and Bases	619		
19.3b	Complex Ion Equilibria	621		
19.4	Simultaneous Equilibria	623		
19.4a	Solubility and pH	623		
19.4b	Solubility and Complex Ions	624		
19.4c	Solubility, Ion Separation, and Qualitative Analysis	625		
Unit F	Recap	628		

	modynamics: opy and Free Energy	631
	5 py 3 1 2 2 2 1 2 1 9 y	
20.1	Entropy and the Three Laws	
	of Thermodynamics	632
20.1a	The First and Second Laws of Thermodynamics	632
20.1b	Entropy and the Second Law of Thermodynamics	633
20.1c	Entropy and Microstates	634
20.1d	Trends in Entropy	636
20.1e	Spontaneous Processes	638
20.1f	The Third Law of Thermodynamics	
	and Standard Entropies	640
20.2	Calculating Entropy Change	642
20.2a	Standard Entropy Change for a Phase Change	642
20.2b	Standard Entropy Change for a Chemical Reaction	644
20.2c	Entropy Change in the Surroundings	645
20.3	Gibbs Free Energy	647
20.3a	Gibbs Free Energy and Spontaneity	647
20.3b	Standard Gibbs Free Energy	649
20.3c	Free Energy, Standard Free Energy,	
	and the Reaction Quotient	651
20.3d	Standard Free Energy and the Equilibrium Constant	653
20.3e	Gibbs Free Energy and Temperature	656
Unit F	Recap	660

Electrochemistry Oxidation-Reduction Reactions and 21.1 **Electrochemical Cells** 666 21.1a Overview of Oxidation-Reduction Reactions 666 Balancing Redox Reactions: Half-Reactions 668 21.1b 21.1c **Balancing Redox Reactions in Acidic** and Basic Solutions 671 21.1d **Construction and Components of Electrochemical** 674 Cells **Electrochemical Cell Notation** 677 21.1e 21.2 Cell Potentials, Free Energy, and Equilibria 678 Cell Potentials and Standard Reduction Potentials 678 21.2a 685 21.2b Cell Potential and Free Energy 686 21.2c Cell Potential and the Equilibrium Constant 21.2d **Cell Potentials Under Nonstandard Conditions** 688 691 21.2e **Concentration Cells** 21.3 Electrolysis 692 692 21.3a **Electrolytic Cells and Coulometry** 695 21.3b **Electrolysis of Molten Salts** 698 21.3c **Electrolysis of Aqueous Solutions** 21.4 Applications of Electrochemistry: **Batteries and Corrosion** 700 700 **Primary Batteries** 21.4a 21.4b **Secondary Batteries** 701 21.4c **Fuel Cells** 703 704 21.4d Corrosion

Organic Chemistry		709
22.1	Hydrocarbons	710
22.1a	Classes of Hydrocarbons	710
22.1b	Alkanes and Cycloalkanes	712
22.1c	Unsaturated Hydrocarbons	715
22.1d	Hydrocarbon Reactivity	719
22.2	Isomerism	722
22.2a	Constitutional Isomerism	722
22.2b	Stereoisomerism	723
22.3	Functional Groups	725
22.3a	Identifying Functional Groups	725
22.3b	Alcohols	726
22.3c	Compounds Containing a Carbonyl Group	730
22.4	Synthetic Polymers	730
22.4a	Addition Polymerization	730
22.4b	Condensation Polymerization	731
22.4c	Control of Polymer Properties	734
22.5	Biopolymers	735
22.5a	Carbohydrates	735
22.5b	Amino Acids	739
22.5c	Proteins	740
22.5d	Nucleic Acids	742
Unit F	Recap	745

Unit Recap

706

Applying Chemical Principles to the Main-Group Elements 749 Structures of the Elements 23.1 750 750 23.1a The Periodic Table 23.1b Metals 751 753 23.1c **Nonmetals** Oxides and Halides of the Nonmetals 23.2 756 756 23.2a **Nonmetal Oxides** 758 23.2b **Nonmetal Halides** 23.3 Compounds of Boron and Carbon 759 759 23.3a **Boron Compounds** 760 **Elemental Carbon** 23.3b 761 23.3c **Cave Chemistry** Carbon Dioxide and Global Warming 762 23.3d Silicon 23.4 764 23.4a Silicon Semiconductors 764 765 23.4b **Silicates** 23.4c **Silicones** 766 Oxygen and Sulfur in the Atmosphere 23.5 768 768 23.5a **Atmospheric Ozone** 770 23.5b Sulfur and Acid Rain **Unit Recap** 771

The Transition Metals		773
24.1	Properties of the Transition Metals	774
24.1a	General Characteristics of Transition Metals	774
24.1b	Atomic Size and Electronegativity	774
24.1c	Ionization Energy and Oxidation States	776
24.2	Isolation from Metal Ores	778
24.2a	Common Ores	778
24.2b	Extraction of Metals from Ores	778
24.3	Coordination Compounds:	
	Structure and Isomerism	781
24.3a	Composition of Coordination Compounds	781
24.3b	Naming Coordination Compounds	784
24.3c	Stability and the Chelate Effect	787
24.3d	Isomerism	788
24.4	Coordination Compounds:	
	Bonding and Spectroscopy	791
24.4a	Crystal Field Theory	791
24.4b	Molecular Orbital Theory	795
24.4c	Spectroscopy	798
Unit F	Recap	800

25 ^N	lucle	ear Chemistry	803
25	5.1	Nuclear Reactions	804
25	i.1a i.1b i.1c	Nuclear vs. Chemical Reactions Natural Radioactive Decay Radioactive Decay and Balancing Nuclear Reactions	804 805 806
25	5.2	Nuclear Stability	810
25	i.2a i.2b i.2c	Band of Stability Binding Energy Relative Binding Energy	810 813 815
25	5.3	Kinetics of Radioactive Decay	816
	i.3a i.3b	Rate of Decay Radioactive Dating	816 818
25	5.4	Fission and Fusion	820
25	i.4a i.4b i.4c	Types of Fission Reactions Nuclear Fuel Nuclear Power	820 822 824
25	5.5	Applications and Uses of Nuclear Chemistry	826
25 25	i.5a i.5b i.5c i.5d	Stellar Synthesis of Elements Induced Synthesis of Elements Nuclear Medicine Radioactivity in the Home	826 829 831 832
U	nit R	lecap	834
		ce Tables	837
	ossar dex	y	851 864

Acknowledgments

A product as complex as *MindTap for General Chemistry: Atoms First* could not have been created by the content authors alone; it also needed a team of talented, hardworking people to design the system, do the programming, create the art, guide the narrative, and help form and adhere to the vision. Although the authors' names are on the cover, what is inside is the result of the entire team's work and we want to acknowledge their important contributions.

Special thanks go to the core team at Cengage Learning that guided us through the entire process: Lisa Lockwood, Senior Product Manager; Brendan Killion, Associate Content Developer; and Rebecca Heider, Content Developer. Thanks also to Beth McCracken, Senior Media Producer; Alexandra Purcell, Digital Content Specialist; Teresa Trego, Senior Content Project Manager; and Ryan Cartmill, Senior Programmer.

This primarily digital learning environment would not have been possible without the talents of Bill Rohan, Jesse Charette, and Aaron Russell of Cow Town Productions, who programmed the embedded media activities, and the entire MindTap Engineering Teams. Nor would it have been possible without the continued effort of David Hart, Stephen Battisti, Cindy Stein, Mayumi Fraser, Gale Parsloe, and Gordon Anderson from the Center for Educational Software Development (CESD) team at the University of Massachusetts, Amherst, the creators of OWL and the first OWLBook, who were there when we needed them most. Many thanks also go to Charles D. Winters for filming the chemistry videos and taking beautiful photographs.

We are grateful to Professor Don Neu of St. Cloud State University for his contributions to the nuclear chemistry chapter, and to the many instructors who gave us feedback in the form of advisory boards, focus groups, and written reviews. We also want to thank those instructors and students who tested early versions of the OWLBook in their courses, most especially Professors Maurice Odago and John Schaumloffel of SUNY Oneonta and Barbara Stewart of the University of Maine who bravely tested the earliest versions of this product.

Bill and Susan would like to thank Jack Kotz, who has been a mentor to both of us for many years. This work would also not have been possible without the support and patience of our families, particularly Kathy, John, John, and Peter.

We are grateful to the many instructors who gave us feedback in the form of advisory boards, focus groups, and written reviews, and most of all to those instructors and students who tested early versions of MindTap Chemistry in their courses.

Advisory Board

Chris Bahn, Montana State University
Christopher Collison, Rochester Institute of Technology
Cory DiCarlo, Grand Valley State University
Stephen Foster, Mississippi State University
Thomas Greenbowe, Iowa State University
Resa Kelly, San Jose State University
James Rudd, California State University, Los Angeles
Jessica Vanden Plas, Grand Valley State University

Class Test Participants

Zsuzsanna Balogh-Brunstad, Hartwick College
Jacqueline Bennett, SUNY Oneonta
Terry Brack, Hofstra University
Preston Brown, Coastal Carolina Community College
Donnie Byers, Johnson County Community College
John Dudek, Hartwick College
Deanna (Dede) Dunlavy, New Mexico State University
Dan Dupuis, Coastal Carolina Community College
Heike Geisler, SUNY Oneonta
Victoria Harris, SUNY Oneonta
Gary Hiel, Hartwick College
Dennis Johnson, New Mexico State University
Thomas Jose, Blinn College
Kirk Kawagoe, Fresno City College

Acknowledgments xvi

Kristen Kilpatrick, $Coastal\ Carolina\ Community\ College$

Orna Kutai, Montgomery College—Rockville Campus

Antonio Lara, New Mexico State University

Scott Lefurgy, Hofstra University

Barbara Lyons, New Mexico State University

Larry Margerum, University of San Francisco

Diana Mason, University of North Texas

Don Neu, St. Cloud State University

Krista Noren-Santmyer, Hillsborough Community College

Erik Ruggles, University of Vermont

Flora Setayesh, Nashville State Community College

Sherril Soman, Grand Valley State University

Marjorie Squires, Felician College

Paul Tate, Hillsborough Community College—Dale Mabry Campus

Trudy Thomas-Smith, SUNY Oneonta

John B. Vincent, University of Alabama

Mary Whitfield, Edmonds Community College

Matthew J. Young, University of New Hampshire

Focus Group Participants

Linda Allen, Louisiana State University

Mufeed M. Basti, North Carolina A&T

Fereshteh Billiot, Texas A&M University—Corpus Christi

Kristen A. Casey, Anne Arundel Community College

Brandon Cruickshank, Northern Arizona University

William Deese, Louisiana Technical University

Cory DiCarlo, Grand Valley State University

Deanna (Dede) Dunlavy, New Mexico State University

Krishna Foster, California State University, Los Angeles

Stephen Foster, Mississippi State University

Gregory Gellene, Texas Technical University

Anita Gnezda, Ball State University

Nathaniel Grove, University of North Carolina at Wilmington

Bernadette Harkness, Delta College

Hongqiu Zhao, Indiana University—Purdue University at Indianapolis

Edith Kippenhan, University of Toledo

Joseph d. Kittle, Jr., Ohio University

Amy Lindsay, University of New Hampshire

Krista Noren-Santmyer, Hillsborough Community College

Olujide T. Akinbo, Butler University

James Reeves, University of North Carolina at Wilmington

James Rudd. California State University. Los Angeles

Raymond Sadeghi, University of Texas at San Antonio

Mark Schraf, West Virginia University

Sherril Soman, Grand Valley State University

Matthew W. Stoltzfus, Ohio State University

Dan Thomas, University of Guelph

Xin Wen, California State University, Los Angeles

Kurt Winkelmann, Florida Institute of Technology

James Zubricky, University of Toledo

Reviewers

Chris Bahn, Montana State University

Yiyan Bai, Houston Community College

Mufeed M. Basti, North Carolina A&T

James Beil, Lorain County Community College

Fereshteh Billiot, Texas A&M University—Corpus Christi

Jeffrey Bodwin, Minnesota State University Moorhead

Steven Brown, University of Arizona

Phil Brucat, University of Florida

Donnie Byers, Johnson County Community College

David Carter, Angelo State University

Allen Clabo, Francis Marion University

Beverly Clement, Blinn College

Willard Collier, Mississippi State

Christopher Collison, Rochester Institute of Technology

Cory DiCarlo, Grand Valley State University

Jeffrey Evans, University of Southern Mississippi

Nick Flynn, Angelo State University

Karin Gruet, Fresno City College

Bernadette Harkness, Delta College

Carl Hoeger, University of California, San Diego

Hongqiu Zhao, Indiana University—Purdue University Indianapolis

Richard Jarman, College of DuPage

Eric R. Johnson, Ball State University

Thomas Jose, Blinn College

Kirk Kawagoe, Fresno City College

Resa Kelly, San Jose State University

Jeffrey A. Mack, Sacramento State University

Larry Margerum, University of San Francisco

Diana Mason, University of North Texas

Donald R. Neu, St. Cloud University

Al Nichols. Jacksonville State University

Olujide T. Akinbo, Butler University

John Pollard, University of Arizona

James Reeves, University of North Carolina at Wilmington Mark Schraf, West Virginia University Shawn Sendlinger, North Carolina Central University Duane Swank, Pacific Lutheran University Michael Topp, University of Pennsylvania Ray Trautman, San Francisco State
John B. Vincent, University of Alabama
Keith Walters, Northern Kentucky University
David Wright, Vanderbilt University
James Zubricky, University of Toledo

Acknowledgments

About the Authors

Susan M. Young

Hartwick College

Susan Young received her B.S. in Chemistry in 1988 from the University of Dayton and her Ph.D. in Inorganic Chemistry in 1994 from the University of Colorado at Boulder under the direction of Dr. Arlan Norman, where she worked on the reactivity of cavity-containing phosphazanes. She did postdoctoral work with Dr. John Kotz at the State University of New York at Oneonta, teaching and working on projects in support of the development of the first General Chemistry CD-ROM. She taught at Roanoke College in Virginia and then joined the faculty at Hartwick College in 1996, where she is now Professor of Chemistry. Susan maintains an active undergraduate research program at Hartwick and has worked on a number of chemistry textbook projects, including coauthoring an Introduction to General, Organic, and Biochemistry Interactive CD-ROM with Bill Vining.

William Vining

State University of New York at Oneonta

Bill Vining graduated from SUNY Oneonta in 1981 and earned his Ph.D. in inorganic chemistry at the University of North Carolina-Chapel Hill in

1985, working on the modification of electrode surfaces with polymerbound redox catalysts. After three years working in industry for S.C. Johnson and Son (Johnson Wax) in Racine, Wisconsin, he became an assistant professor of inorganic chemistry at Hartwick College and eventually department chair. It was here that Bill started working on educational software, first creating the set of simulations called Chemland. This led to work with Jack Kotz on the first General Chemistry CD-ROM and a distance-learning course produced with Archipelago Productions. This work led to a move to the University of Massachusetts, where he served as Director of General Chemistry, which serves 1400 students every semester. He was awarded the University of Massachusetts Distinguished Teaching Award in 1999 and the UMass College of Natural Sciences Outstanding Teacher Award in 2003. At UMass, he also ran a research group dedicated to developing interactive educational software, which included 15 professionals, graduate students, undergraduates, postdoctoral students, programmers, and artists. After nine years at UMass, Bill decided to move back to a primarily undergraduate institution and arrived at SUNY Oneonta, where he now works with undergraduates, Cow Town Productions, and the UMass OWL team.

Roberta Day

Professor Emeritus, University of Massachusetts

Roberta Day received a B.S. in Chemistry from the University of Rochester, Rochester, New York; spent 5 years in the research laboratories of the Eastman Kodak Company, Rochester, New York; and then received a Ph.D. in Physical Chemistry from the Massachusetts Institute of Technology, Cambridge, Massachusetts. After postdoctoral work sponsored by both the Damon Runyon Memorial Fund and the National Institutes of Health, she joined the faculty of the University of Massachusetts, Amherst, rising through the ranks to Full Professor in the Chemistry Department. She initiated the use of online electronic homework in general chemistry at UMass, is one of the inventors of the OWL system, has been either PI or Co-I for several major national grants for the development of OWL, and has authored a large percentage of the questions in the OWL database for General Chemistry. Recognition for her work includes the American Chemical Society Connecticut Valley Section

Award for outstanding contributions to chemistry and the UMass College of Natural Science and Mathematics Outstanding Teacher Award. Her research in chemistry as an x-ray crystallographer has resulted in the publication of more than 180 articles in professional journals. She is now a Professor Emeritus at the University of Massachusetts and continues her work on the development of electronic learning environments for chemistry.

Beatrice Botch

University of Massachusetts

Beatrice Botch is the Director of General Chemistry at the University of Massachusetts. She received her B.A. in Chemistry from Barat College in Lake Forest, Illinois, and her Ph.D. in Physical Chemistry from Michigan State University. She completed her graduate work at Argonne National Laboratory under the direction of Dr. Thom Dunning Jr. and was a post-doctoral fellow at the California Institute of Technology, working in the group of Professor William A. Goddard III. She taught at Southwest State University in Minnesota and Wittenberg University in Ohio before joining the faculty at the University of Massachusetts in 1988. She received the UMass College of Natural Science and Mathematics Outstanding Teacher Award in 1999. She is one of the inventors of OWL, and she authored questions in OWL for General Chemistry. She has been principal investigator and co-investigator on a number of grants and contracts related to OWL development and dissemination and continues to develop learning materials in OWL to help students succeed in chemistry.

About the Authors

To the Student

Welcome to a new integrated approach to chemistry. Chemistry is a continually evolving science that examines and manipulates the world on the atomic and molecular level. In chemistry, it's mostly about the molecules. What are they like? What do they do? How can we make them? How do we even know if we have made them? One of the primary goals of chemistry is to understand matter on the molecular scale well enough to allow us to predict which chemical structures will yield particular properties, and the insight to be able to synthesize those structures.

In this first-year course you will learn about atoms and how they form molecules and other larger structures. You will use molecular structure and the ways atoms bond together to explain the chemical and physical properties of matter on the molecular and bulk scales, and in many cases you will learn to predict these behaviors. One of the most challenging and rewarding aspects of chemistry is that we describe and predict bulk, human scale properties through an understanding of particles that are so very tiny they cannot be seen even with the most powerful optical microscope. So, when we see things happen in the world, we translate and imagine what must be occurring to the molecules that we can't ever see.

Our integrated approach is designed to be one vehicle in your learning; it represents a new kind of learning environment built by making the best uses of traditional written explanations, with interactive activities to help you learn the central concepts of chemistry and how to use those concepts to solve a wide variety of useful and chemically important problems. These readings and activities will represent your homework and as such you will find that your book is your homework, and your homework is your book. In this regard, the interactive reading assignments contain integrated active versions of important figures and tables, reading comprehension questions, and suites of problem solving examples that give you step-by-step tutorial help, recorded "video solutions" to important problems, and practice problems with rich feedback that allow you to practice a problem type multiple times using different chemical examples. In addition to the interactive reading assignments, there are additional OWL problems designed to solidify your understanding of each section as well as end-of-chapter assignments.

The authors of the OWLBook have decades of experience teaching chemistry, talking with students, and developing online chemistry learning systems. For us, this work represents our latest effort to help students beyond our own classrooms and colleges. All in all, we hope that your time with us is rewarding and we wish you the best of luck.

Chemistry: Matter on the Atomic Scale

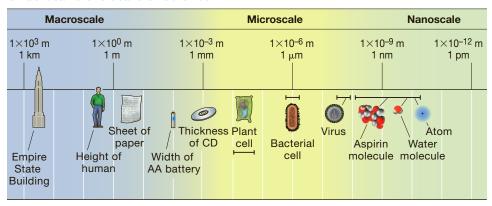
Unit Outline

- 1.1 What Is Chemistry?
- 1.2 Classification of Matter
- 1.3 Units and Measurement
- 1.4 Unit Conversions

In This Unit...

This unit introduces atoms and molecules, the fundamental components of matter, along with the different types of structures they can make when they join together and the types of changes they undergo. We also describe some of the tools scientists use to describe, classify, and measure matter.

1.1 What Is Chemistry?


1.1a The Scale of Chemistry

Chemistry is the study of matter, its transformations, and how it behaves. We define **matter** as any physical substance that occupies space and has mass. Matter consists of atoms and molecules, and it is at the atomic and molecular levels that chemical transformations take place.

Different fields of science examine the world at different levels of detail (Interactive Figure 1.1.1).

Interactive Figure 1.1.1

Understand the scale of science.

The macroscopic, microscopic, and atomic scales in different fields of science

When describing matter that can be seen with the naked eye, scientists are working on the **macroscopic scale**. Chemists use the **atomic scale** (sometimes called the *nanoscale* or the *molecular scale*) when describing individual atoms or molecules. In general, in chemistry we make observations at the macroscopic level and we describe and explain chemical processes on the atomic level. That is, we use our macroscopic scale observations to explain atomic scale properties.

Example Problem 1.1.1 Differentiate between the macroscopic and atomic scales.

Classify each of the following as matter that can be measured or observed on either the macroscopic or atomic scale.

- a. An RNA molecule
- b. A mercury atom
- c. A sample of liquid mercury

Solution:

You are asked to identify whether a substance can be measured or observed on the macroscopic or atomic scale.

You are given the identity of the substance.

- a. Atomic scale. An RNA molecule is too small to be seen with the naked eye or with an optical microscope.
- Atomic scale. Individual atoms cannot be seen with the naked eye or with an optical microscope.
- c. Macroscopic scale. Liquid mercury can be seen with the naked eye.

1.1b Measuring Matter

Chemistry is an experimental science that involves designing thoughtful experiments and making careful observations of macroscopic amounts of matter. Everything that is known about how atoms and molecules interact has been learned through making careful observations on the macroscopic scale and inferring what those observations must mean about atomic scale objects.

For example, careful measurement of the mass of a chemical sample before and after it is heated provides information about the chemical composition of a substance. Observing how a chemical sample behaves in the presence of a strong magnetic field such as that found in a magnetic resonance imaging (MRI) scanner provides information about how molecules and atoms are arranged in human tissues.

An important part of chemistry and science in general is the concept that all ideas are open to challenge. When we perform measurements on chemical substances and interpret the results in terms of atomic scale properties, we must always examine the results to see if there are alternative ways to interpret the data. This method of investigation, called the **scientific method**, ensures that information about the chemical properties and behavior of matter is supported by the results of many different experiments.

Video Solution 1.1.1

The scientific method consists of the following steps:

- 1. Choose a system to study. Determine what is already known about it, and then begin by doing experiments and making careful observations.
- 2. Propose one or more **scientific hypotheses**, tentative statements that could possibly explain an observation and predict future observations. (If a clear pattern is observed over many experiments, scientists might summarize the pattern in a **scientific law**, a concise verbal or mathematical statement that describes a consistent relationship but does not necessarily explain why the pattern of behavior occurs.)
- 3. Design and perform experiments to test the hypotheses. If the hypotheses are true, these experiments will lead to the predicted results.
- 4. Use experimental results to confirm or revise existing hypotheses, generate new hypotheses, and/or design further experiments to test the hypotheses.
- 5. After extensive experimentation and study, use one or more tested hypotheses to propose a **scientific theory**. Theories continue to be tested as new systems are designed, discovered, and studied. If a theory does not stand up to experimentation, it must be revised or discarded, or it could be understood to be useful only within certain limitations.

Interactive Figure 1.1.2 shows a common chemistry demonstration that can be used to demonstrate the scientific method.

1.2 Classification of Matter

1.2a Classifying Matter on the Atomic Scale

Matter can be described by a collection of characteristics called **properties**. One of the fundamental properties of matter is its composition, or the specific types of atoms or molecules that make it up. An **element**, which is the simplest type of matter, is a pure substance that cannot be broken down or separated into simpler substances. You are already familiar with some of the most common elements such as gold, silver, and copper, which are used in making coins and jewelry, and oxygen, nitrogen, and argon, which are the three most abundant gases in our atmosphere. A total of 118 elements have been identified, 90 of which exist in nature (the rest have been synthesized in the laboratory). Elements are represented by a one- or two-letter element symbol, and they are organized in the periodic table, which is shown in Atoms and Elements (Unit 2) and in the Reference Tables. A few common elements and their symbols are shown in Table 1.2.1. Notice that when the symbol for an element consists of two letters, only the first letter is capitalized.

Interactive Figure 1.1.2

Apply the scientific method.

A vigorous reaction occurs when a red gummi bear is mixed with molten potassium chlorate. How would a scientist investigate this chemical system?

Atoms

An **atom** is the smallest indivisible unit of an element. For example, the element aluminum (Interactive Figure 1.2.1) is made up entirely of aluminum atoms.

Although individual atoms are too small to be seen directly with the naked eye or with the use of a standard microscope, methods such as scanning tunneling microscopy (STM) allow scientists to view atoms. Both experimental observations and theoretical studies

Carbon, C

Oxygen, O

Hydrogen, H

Iodine, I

show that isolated atoms are spherical and that atoms of different elements have different sizes. Thus, the model used to represent isolated atoms consists of spheres of different sizes. In addition, chemists often use color to distinguish atoms of different elements. For example, oxygen atoms are usually represented as red spheres, carbon atoms as gray or black spheres, and hydrogen atoms as white spheres.

Elements are made up of only one type of atom. For example, the element oxygen is found in two forms: as O_2 , in which two oxygen atoms are grouped together, and as O_3 , in which three oxygen atoms are grouped together.

Dioxygen, O₂

Ozone, O₃

The most common form of oxygen is O_2 , dioxygen, a gas that makes up about 21% of the air we breathe. Ozone, O_3 , is a gas with a distinct odor that can be toxic to humans. Both dioxygen and ozone are elemental forms of oxygen because they consist of only one type of atom.

Compounds and Molecules

A **chemical compound** is a substance formed when two or more elements are combined in a defined ratio. Compounds differ from elements in that they can be broken down chemically into simpler substances. You have encountered chemical compounds in many common substances, such as table salt, a compound consisting of the elements sodium and chlorine, and phosphoric acid, a compound found in soft drinks that contains hydrogen, oxygen, and phosphorus.

Molecules are collections of atoms that are held together by chemical bonds. In models used to represent molecules, chemical bonds are often represented using cylinders or lines that connect atoms, represented as spheres. The composition and arrangement of elements in molecules affects the properties of a substance. For example as shown in Interactive Figure 1.2.2, molecules of both water (H_2O) and hydrogen peroxide (H_2O_2) contain only the elements hydrogen and oxygen.

Table 1.2.1 Some Common Elements and Their Symbols

Name	Symbol
Hydrogen	Н
Carbon	С
Oxygen	0
Sodium	Na
Iron	Fe
Aluminum	Al

Interactive Figure 1.2.1

Explore the composition of elements.

A piece of aluminum

Water is a relatively inert substance that is safe to drink in its pure form. Hydrogen peroxide, however, is a reactive liquid that is used to disinfect wounds and can cause severe burns if swallowed.

Molecules can also be elements. As you saw above, elemental oxygen consists of both two-atom (dioxygen, O_2) and three-atom (ozone, O_3) molecules.

Example Problem 1.2.1 Classify pure substances as elements or compounds.

Classify each of the following substances as either an element or a compound.

a. Si b. CO_2

c. P_4

Solution:

You are asked to classify a substance as an element or a compound.

You are given the chemical formula of the substance.

- a. Element. Silicon is an example of an element because it consists of only one type of atom.
- b. Compound. This compound contains both carbon and oxygen.
- c. Element. Although this is an example of a molecular substance, it consists of only a single type of atom.

Classifying Pure Substances on the Macroscopic Scale

A pure substance contains only one type of element or compound and has fixed chemical composition. A pure substance also has characteristic properties, measurable qualities that are independent of the sample size. The physical properties of a chemical substance are those that do not change the chemical composition of the material when they are measured. Some examples of physical properties include physical state, color, viscosity (resistance to flow), opacity, density, conductivity, and melting and boiling points.

States of Matter

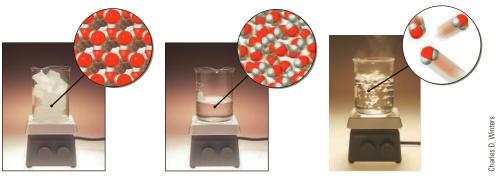
One of the most important physical properties is the physical state of a material. The three physical **states of matter** are solid, liquid, and gas (Interactive Figure 1.2.3).

The macroscopic properties of these states are directly related to the arrangement and properties of particles at the atomic level. At the macroscopic level, a **solid** is a dense material with a defined shape. At the atomic level, the atoms or molecules of a solid are packed together closely. The atoms or molecules are vibrating, but they do not move past one another. At the macroscopic level, a **liquid** is also dense, but unlike a solid it flows and takes on the shape of its container. At the atomic level, the atoms or molecules of a liquid are close together, but they move more than the particles in a solid and can flow past

Interactive Figure 1.2.2

Explore the composition of compounds and molecules.

Water, H2O


Hydrogen peroxide, H₂O₂

Water and hydrogen peroxide are compounds containing the elements hydrogen and oxygen

Video Solution 1.2.1

Interactive Figure 1.2.3

Distinguish the properties of the three states of matter.

Representations of a solid, a liquid, and a gas

one another. Finally, at the macroscopic level, a **gas** has no fixed shape or volume. At the atomic level, the atoms or molecules of a gas are spaced widely apart and are moving rapidly past one another. The particles of a gas do not strongly interact with one another, and they move freely until they collide with one another or with the walls of the container.

The physical state of a substance can change when energy, often in the form of heat, is added or removed. When energy is added to a solid, the temperature at which the solid is converted to a liquid is the **melting point** of the substance. The conversion of liquid to solid occurs at the same temperature as energy is removed (the temperature falls) and is called the **freezing point**. A liquid is converted to a gas at the **boiling point** of a substance. As you will see in the following section, melting and boiling points are measured in Celsius (°C) or Kelvin (K) temperature units.

Not all materials can exist in all three physical states. Polyethylene, for example, does not exist as a gas. Heating a solid polyethylene milk bottle at high temperatures causes it to decompose into other substances. Helium, a gas at room temperature, can be liquefied at very low temperatures, but it is not possible to solidify helium.

A change in the physical property of a substance is called a **physical change**. Physical changes may change the appearance or the physical state of a substance, but they do not change its chemical composition. For example, a change in the physical state of water—changing from a liquid to a gas—involves a change in how the particles are packed together at the atomic level, but it does not change the chemical makeup of the material.

Chemical Properties

The **chemical properties** of a substance are those that involve a chemical change in the material and often involve a substance interacting with other chemicals. For example, a chemical property of methanol, CH_3OH , is that it is highly flammable because the compound burns in air (it reacts with oxygen in the air) to form water and carbon dioxide (Interactive Figure 1.2.4).

A **chemical change** involves a change in the chemical composition of the material. The flammability of methanol is a chemical property, and demonstrating this chemical property involves a chemical change.

Example Problem 1.2.2 Identify physical and chemical properties and physical and chemical changes.

- a. When aluminum foil is placed into liquid bromine, a white solid forms. Is this a chemical or physical property of aluminum?
- b. Iodine is a purple solid. Is this a chemical or physical property of iodine?
- c. Classify each of the following changes as chemical or physical.
 - i. Boiling water
 - ii. Baking bread

Solution:

You are asked to identify a change or property as chemical or physical.

You are given a description of a material or change.

- a. Chemical property. Chemical properties are those that involve a chemical change in the material and often involve a substance interacting with other chemicals. In this example, one substance (the aluminum) is converted into a new substance (a white solid).
- b. Physical property. A physical property such as color is observed without a change in the chemical identity of the substance.
- c. i. Physical change. A physical change alters the physical form of a substance without changing its chemical identity. Boiling does not change the chemical composition of water.
- ii. Chemical change. When a chemical change takes place, the original substances (the bread ingredients) are broken down, and a new substance (bread) is formed.

1.2c Classifying Mixtures on the Macroscopic Scale

As you can see when you look around you, the world is made of complex materials. Much of what surrounds us is made up of mixtures of different substances. A **mixture** is a substance made up of two or more elements or compounds that have not reacted chemically.

Unlike compounds, where the ratio of elements is fixed, the relative amounts of different components in a mixture can vary. Mixtures that have a constant composition throughout the material are called **homogeneous mixtures**. For example, dissolving table salt in

Interactive Figure 1.2.4

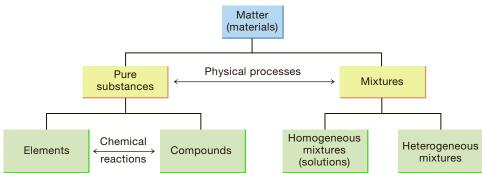
Investigate the chemical properties of methanol.

Methanol is a flammable liquid

Video Solution 1.2.2

water creates a mixture of the two chemical compounds water (H_2O) and table salt (NaCl). Because the mixture is uniform, meaning that the same ratio of water to table salt is found no matter where it is sampled, it is a homogeneous mixture.

A mixture in which the composition is not uniform is called a **heterogeneous mixture**. For example, a cold glass of freshly squeezed lemonade with ice is a heterogeneous mixture because you can see the individual components (ice cubes, lemonade, and pulp), and the relative amounts of each component will depend on where the lemonade is sampled (from the top of the glass or from the bottom). The two different types of mixtures are explored in Interactive Figure 1.2.5.


Homogeneous and heterogeneous mixtures can usually be physically separated into individual components. For example, a homogeneous mixture of salt and water is separated by heating the mixture to evaporate the water, leaving behind the salt. A heterogeneous mixture of sand and water is separated by pouring the mixture through filter paper. The sand is trapped in the filter while the water passes through. Heating the wet sand to evaporate the remaining water completes the physical separation.

Like pure substances, mixtures have physical and chemical properties. These properties, however, depend on the composition of the mixture. For example, a mixture of 10 grams of table sugar and 100 grams of water has a boiling point of 100.15 °C, while a mixture of 20 grams of table sugar and 100 grams of water has a boiling point of 100.30 °C.

Interactive Figure 1.2.6 summarizes how we classify different forms of matter in chemistry.

Interactive Figure 1.2.6

Classify matter.

A flow chart for the classification of matter

Interactive Figure 1.2.5

Identify homogeneous and heterogeneous mixtures.

Homogeneous and heterogeneous mixtures

Charles D. Win